雙語文章:為什麼我們總是擺脫不了父母的影子?

在我們的細胞內,我們每個人都有第二套基因,與23對染色體完全分離。這不僅適用於人類,也適用於地球上的每一種動物、植物和真菌。第二個基因組屬於我們的線粒體,它是我們細胞內的一種細胞器。那麼,為什麼它們與我們身體中的任何其他東西都如此不同呢?

演講者:Devin Shuman

演講題目: The genes you don‘t get from your parents (but can’t live without)

Inside our cells, each of us has a second set of genes completely separate from the 23 pairs of chromosomes we inherit from our parents。 And this isn’t just the case for humans— it’s true of every animal, plant, and fungus, and nearly every multicellular organism on Earth。 This second genome belongs to our mitochondria, an organelle inside our cells。 They’re not fully a part of us, but they’re not separate either— so why are they so different from anything else in our bodies?

在我們的細胞內,我們每個人都有第二套基因與我們從父母那裡繼承的23對染色體完全分開。而且這不僅僅是人類的情況——每種動物、植物和真菌,以及幾乎所有地球上每個多細胞的生物體都是如此。這第二個基因組屬於我們的線粒體,是我們細胞內的一個細胞器。他們並不完全是我們的一部分,但它們也不是獨立的——那麼,為什麼它們與我們身體裡的其他東西如此不同?

Approximately 1。5 billion years ago, scientists think a single-celled organism engulfed the mitochondria’s ancestor, creating the predecessor of all multicellular organisms。 Mitochondria play an essential role: they convert energy from the food we eat and oxygen we breathe into a form of energy our cells can use, which is a molecule called ATP。 Without this energy, our cells start to die。 Humans have over 200 types of cells, and all except mature red blood cells have mitochondria。 That’s because a red blood cell’s job is to transport oxygen, which mitochondria would use up before it could reach its destination。

大約15億年前,科學家認為一個單細胞生物體吞噬了線粒體的祖先,進而創造了所有多細胞生物的前身。線粒體起著至關重要的作用:它們從我們吃的食物和呼吸的氧氣中的能量,轉化為我們細胞可以使用的能量形式,這就是一種叫做ATP的分子。沒有這種能量,我們的細胞就會開始死亡。人類有超過200種類型的細胞,而除了成熟的紅細胞外,都有線粒體。這是因為紅細胞的工作是運輸氧氣,而線粒體在它到達目的地之前就會耗盡。

So all mitochondria use oxygen and metabolites to create energy and have their own DNA, but mitochondrial DNA varies more across species than other DNA。 In mammals, mitochondria usually have 37 genes。 In some plants, like cucumbers, mitochondria have up to 65 genes, and some fungal mitochondria have only 1。 A few microbes that live in oxygen-poor environments seem to be on the way to losing their mitochondria entirely, and one group, oxymonad monocercomonoides, already has。

因此,所有線粒體都使用氧氣和代謝物來產生能量,並有自己的DNA。與其他DNA相比,線粒體DNA在不同物種間的差異更大。在哺乳動物中,線粒體通常有37個基因。在一些植物中,如黃瓜,線粒體有多達65個基因,而一些真菌的線粒體只有1個。一些生活在貧氧環境中的微生物似乎正在走向完全失去他們的線粒體的路上,而類單鞭滴蟲屬的這些生物已經開始沒有線粒體了。

This variety exists because mitochondria are still evolving, both in tandem with the organisms that contain them, and separately, on their own timeline。 To understand how that’s possible, it helps to take a closer look at what the mitochondria inside us are doing, starting from the moment we’re conceived。

這種多樣性的存在是因為線粒體仍在進化中,與含有它們的生物體,分別在自己的時間線上同步進行。要了解這一點是如何實現的,仔細看看我們體內的線粒體在做什麼會有所幫助,從我們受孕的那一刻開始。

In almost all species, mitochondrial DNA is passed down from only one parent。 In humans and most animals, that parent is the mother。 Sperm contain approximately 50 to 75 mitochondria in the tail, to help them swim。 These dissolve with the tail after conception。 Meanwhile, an egg contains thousands of mitochondria, each containing multiple copies of the mitochondrial DNA。 This translates to over 150,000 copies of mitochondrial DNA that we inherit from our mothers, each of which is independent and could vary slightly from the others。

在幾乎所有物種中,線粒體DNA只從父母一方傳下來。在人類和大多數動物中。該受體是母親。精子的尾部大約含有50至75個線粒體,來幫助他們遊動。這些東西在受孕後與尾巴一起解體。同時,一個卵含有成千上萬的線粒體,每個都含有多組線粒體DNA 。這意味著我們體內超過15萬份的線粒體DNA是從母親那裡繼承的。每一個都是獨立的,且彼此之間可能略有不同。

As a fertilized egg grows and divides, those thousands of mitochondria are divvied up into the cells of the developing embryo。 By the time we have differentiated tissues and organs, variations in the mitochondrial DNA are scattered at random throughout our bodies。 To make matters even more complex, mitochondria have a separate replication process from our cells。

隨著受精卵的生長和分裂,這些數以千計的線粒體被分配到發育中的胚胎細胞中。當我們有了分化的組織和器官,線粒體DNA的變異是隨機地散佈在我們的身體裡。使之更復雜的是,線粒體有一個與我們細胞不同的獨立複製。

So as our cells replicate by dividing, mitochondria end up in new cells, and all the while they’re fusing and dividing themselves, on their own timeline。 As mitochondria combine and separate, they sequester faulty DNA or mitochondria that aren’t working properly for removal。 All this means that the random selection of your mother’s mitochondrial DNA you inherit at birth can change throughout your life and throughout your body。

因此,當我們的細胞透過分裂進行復制時,線粒體最終出現在新細胞中,而它們在自己的時間軸上融合和分裂。隨著線粒體的結合和分離,它們封存了有問題的DNA或對不正常工作的線粒體進行清除。所有這一切意味著,你在出生時從母親那隨機繼承的線粒體DNA會在你的一生中在你身上發生改變。

So mitochondria are dynamic and, to a degree, independent, but they’re also shaped by their environments: us。 We think that long ago, some of their genes were transferred to their host’s genomes。 So today, although mitochondria have their own genome and replicate separately from the cells that contain them, they can‘t do this without instruction from our DNA。 And though mitochondrial DNA is inherited from one parent, the genes involved in building and regulating the mitochondria come from both。

所以線粒體是動態的,而且,在某種程度上是獨立的,但它們也被他們的環境所塑造:即我們每個個體。我們認為,很久以前,它們的一些基因被轉移到宿主的基因組中。所以今天,雖然線粒體有自己的基因組,並與包含它們的細胞分別進行復制,如果沒有我們的DNA指示,它們就不能這樣做。而儘管線粒體DNA是由父母一方遺傳的,參與建立和調節線粒體的基因來自父母雙方。

Mitochondria continue to defy tidy classification。 Their story is still unfolding inside of each of our cells, simultaneously separate and inseparable from our own。 Learning more about them can both give us tools to protect human health in the future, and teach us more about our history。

線粒體繼續藐視著井井有條的分類。它們的故事仍在我們每個人的細胞裡展開,同時獨立且與我們自己不可分割。更多地瞭解它們,既可以給我們提供在未來保護人類健康的辦法,還能讓我們更多地瞭解我們的歷史。

TAG: 線粒體DNAmitochondriaourcells